Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27.867
1.
Nat Commun ; 15(1): 3947, 2024 May 10.
Article En | MEDLINE | ID: mdl-38729951

Gram-negative bacteria (GNB) are a major cause of neonatal sepsis in low- and middle-income countries (LMICs). Although the World Health Organization (WHO) reports that over 80% of these sepsis deaths could be prevented through improved treatment, the efficacy of the currently recommended first- and second-line treatment regimens for this condition is increasingly affected by high rates of drug resistance. Here we assess three well known antibiotics, fosfomycin, flomoxef and amikacin, in combination as potential antibiotic treatment regimens by investigating the drug resistance and genetic profiles of commonly isolated GNB causing neonatal sepsis in LMICs. The five most prevalent bacterial isolates in the NeoOBS study (NCT03721302) are Klebsiella pneumoniae, Acinetobacter baumannii, E. coli, Serratia marcescens and Enterobacter cloacae complex. Among these isolates, high levels of ESBL and carbapenemase encoding genes are detected along with resistance to ampicillin, gentamicin and cefotaxime, the current WHO recommended empiric regimens. The three new combinations show excellent in vitro activity against ESBL-producing K. pneumoniae and E. coli isolates. Our data should further inform and support the clinical evaluation of these three antibiotic combinations for the treatment of neonatal sepsis in areas with high rates of multidrug-resistant Gram-negative bacteria.


Acinetobacter baumannii , Anti-Bacterial Agents , Gram-Negative Bacteria , Gram-Negative Bacterial Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Neonatal Sepsis , Humans , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Neonatal Sepsis/microbiology , Neonatal Sepsis/drug therapy , Infant, Newborn , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Acinetobacter baumannii/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/genetics , Amikacin/pharmacology , Amikacin/therapeutic use , Fosfomycin/pharmacology , Fosfomycin/therapeutic use , beta-Lactamases/genetics , beta-Lactamases/metabolism , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/isolation & purification , Developing Countries , Drug Resistance, Multiple, Bacterial/genetics , Drug Therapy, Combination , Serratia marcescens/drug effects , Serratia marcescens/genetics , Serratia marcescens/isolation & purification , Enterobacter cloacae/drug effects , Enterobacter cloacae/genetics , Enterobacter cloacae/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
2.
Front Cell Infect Microbiol ; 14: 1368622, 2024.
Article En | MEDLINE | ID: mdl-38741889

There is scarce information concerning the role of sporadic clones in the dissemination of antimicrobial resistance genes (ARGs) within the nosocomial niche. We confirmed that the clinical Escherichia coli M19736 ST615 strain, one of the first isolates of Latin America that harbors a plasmid with an mcr-1 gene, could receive crucial ARG by transformation and conjugation using as donors critical plasmids that harbor bla CTX-M-15, bla KPC-2, bla NDM-5, bla NDM-1, or aadB genes. Escherichia coli M19736 acquired bla CTX-M-15, bla KPC-2, bla NDM-5, bla NDM-1, and aadB genes, being only blaNDM-1 maintained at 100% on the 10th day of subculture. In addition, when the evolved MDR-E. coli M19736 acquired sequentially bla CTX-M-15 and bla NDM-1 genes, the maintenance pattern of the plasmids changed. In addition, when the evolved XDR-E. coli M19736 acquired in an ulterior step the paadB plasmid, a different pattern of the plasmid's maintenance was found. Interestingly, the evolved E. coli M19736 strains disseminated simultaneously the acquired conjugative plasmids in different combinations though selection was ceftazidime in all cases. Finally, we isolated and characterized the extracellular vesicles (EVs) from the native and evolved XDR-E. coli M19736 strains. Interestingly, EVs from the evolved XDR-E. coli M19736 harbored bla CTX-M-15 though the pDCAG1-CTX-M-15 was previously lost as shown by WGS and experiments, suggesting that EV could be a relevant reservoir of ARG for susceptible bacteria. These results evidenced the genetic plasticity of a sporadic clone of E. coli such as ST615 that could play a relevant transitional link in the clinical dynamics and evolution to multidrug/extensively/pandrug-resistant phenotypes of superbugs within the nosocomial niche by acting simultaneously as a vector and reservoir of multiple ARGs which later could be disseminated.


Anti-Bacterial Agents , Escherichia coli Infections , Escherichia coli , Gene Transfer, Horizontal , Plasmids , beta-Lactamases , Escherichia coli/genetics , Escherichia coli/drug effects , Plasmids/genetics , Humans , Escherichia coli Infections/microbiology , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Conjugation, Genetic , Escherichia coli Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , Latin America , Drug Resistance, Bacterial/genetics
3.
PLoS One ; 19(5): e0303353, 2024.
Article En | MEDLINE | ID: mdl-38743684

INTRODUCTION: The study of Klebsiella quasipneumoniae, Klebsiella variicola, and AmpC production in extended-spectrum ß-lactamase (ESBL)-producing Klebsiella in Japan is limited, and existing data are insufficient. This study aims to characterize Klebsiella species, determine AmpC production rates, and analyze antimicrobial resistance patterns in ESBL-producing Klebsiella isolates in Japan. METHODS: A total of 139 clinical isolates of ESBL-producing Klebsiella were collected in Japan, along with their corresponding antimicrobial susceptibility profiles. The isolates were identified using a web-based tool. ESBL genes within the isolates were identified using multiplex PCR. Screening for AmpC-producing isolates was performed using cefoxitin disks, followed by multiplex PCR to detect the presence of AmpC genes. Antimicrobial resistance patterns were analyzed across the predominant ESBL genotypes. RESULTS: The web-based tool identified 135 isolates (97.1%) as Klebsiella pneumoniae and 4 (2.9%) as K. quasipneumoniae subsp. similipneumoniae, with no instances of K. variicola detected. Among K. pneumoniae, the CTX-M-1 group emerged as the predominant genotype (83/135, 61.5%), followed by K. quasipneumoniae subsp. similipneumoniae (3/4, 75.0%). The CTX-M-9 group was the second most prevalent genotype in K. pneumoniae (45/135, 33.3%). The high resistance rates were observed for quinolones (ranging from 46.7% to 63.0%) and trimethoprim/sulfamethoxazole (78.5%). The CTX-M-1 group exhibited higher resistance to ciprofloxacin (66/83, 79.5%) compared to the CTX-M-9 group (18/45, 40.0%), a trend also observed for levofloxacin and trimethoprim/sulfamethoxazole. Among the 16 isolates that tested positive during AmpC screening, only one K. pneumoniae isolates (0.7%) were confirmed to carry the AmpC gene. CONCLUSION: Klebsiella pneumoniae with the CTX-M-1 group is the most common ESBL-producing Klebsiella in Japan and showed a low proportion of AmpC production. These isolates are resistant to quinolones and trimethoprim/sulfamethoxazole, highlighting the challenge of managing this pathogen. The findings underscore the importance of broader research and continuous monitoring to address the resistance patterns of ESBL-producing Klebsiella.


Anti-Bacterial Agents , Bacterial Proteins , Klebsiella Infections , Klebsiella pneumoniae , Klebsiella , Microbial Sensitivity Tests , beta-Lactamases , beta-Lactamases/genetics , beta-Lactamases/metabolism , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Klebsiella/genetics , Klebsiella/drug effects , Klebsiella/isolation & purification , Klebsiella/enzymology , Japan , Retrospective Studies , Humans , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Klebsiella Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Male , Female , East Asian People
4.
Sci Rep ; 14(1): 10897, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740876

Urinary tract infection (UTI) is the most prevalent urological condition worldwide. Choosing appropriate antibiotics for patients who have fever before receiving a culture result is challenging. This retrospective study enrolled patients 394 patients hospitalized at Gangneung Asan Hospital for UTI from May 2017 to April 2021. Fever at 48 h of hospitalization was the analysis point, as this is when the response to antibiotic therapy manifest, although the results of antibiogram are not available. Multivariate analysis was performed to assess the correlation between ESBL producing bacteria (EPB) and fever at 48 h. Overall, 36.3% of patients had EPB and 27.9% had fever at 48 h. In multivariate analysis, a significant positive association was found between EPB and fever (odds ratio 1.17, 95% CI 1.05-1.30, P = 0.004) Female had negative association with multivariate model (OR 0.83, 95% CI 0.73-0.94, P = 0.004). Diabetes did not demonstrate a significant association with EPB. (OR 1.10, 95% CI 0.99-1.22, P = 0.072). Fever at 48 h is associated with EPB and could be considered a predictive factor for EPB infection in patients with UTI. Antibiotic escalation may be considered in patients with fever at 48 h.


Anti-Bacterial Agents , Fever , Urinary Tract Infections , beta-Lactamases , Humans , Urinary Tract Infections/microbiology , Urinary Tract Infections/drug therapy , Female , Male , beta-Lactamases/metabolism , Retrospective Studies , Aged , Middle Aged , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Fever/microbiology , Fever/drug therapy , Aged, 80 and over , Adult
5.
J Korean Med Sci ; 39(17): e157, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711319

This study assessed the performance of the BioFire Blood Culture Identification 2 (BCID2) panel in identifying microorganisms and antimicrobial resistance (AMR) profiles in positive blood cultures (BCs) and its influence on turnaround time (TAT) compared with conventional culture methods. We obtained 117 positive BCs, of these, 102 (87.2%) were correctly identified using BCID2. The discordance was due to off-panel pathogens detected by culture (n = 13), and additional pathogens identified by BCID2 (n = 2). On-panel pathogen concordance between the conventional culture and BCID2 methods was 98.1% (102/104). The conventional method detected 19 carbapenemase-producing organisms, 14 extended-spectrum beta-lactamase-producing Enterobacterales, 18 methicillin-resistant Staphylococcus spp., and four vancomycin-resistant Enterococcus faecium. BCID2 correctly predicted 53 (96.4%) of 55 phenotypic resistance patterns by detecting AMR genes. The TAT for BCID2 was significantly lower than that for the conventional method. BCID2 rapidly identifies pathogens and AMR genes in positive BCs.


Blood Culture , Multiplex Polymerase Chain Reaction , Multiplex Polymerase Chain Reaction/methods , Humans , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , Bacterial Proteins/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Enterococcus faecium/genetics , Enterococcus faecium/isolation & purification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/drug effects , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/isolation & purification , Bacteremia/microbiology , Bacteremia/diagnosis
6.
Biotechnol J ; 19(5): e2400023, 2024 May.
Article En | MEDLINE | ID: mdl-38719589

The discovery of antibiotics has noticeably promoted the development of human civilization; however, antibiotic resistance in bacteria caused by abusing and overusing greatly challenges human health and food safety. Considering the worsening situation, it is an urgent demand to develop emerging nontraditional technologies or methods to address this issue. With the expanding of synthetic biology, optogenetics exhibits a tempting prospect for precisely regulating gene expression in many fields. Consequently, it is attractive to employ optogenetics to reduce the risk of antibiotic resistance. Here, a blue light-controllable gene expression system was established in Escherichia coli based on a photosensitive DNA-binding protein (EL222). Further, this strategy was successfully applied to repress the expression of ß-lactamase gene (bla) using blue light illumination, resulting a dramatic reduction of ampicillin resistance in engineered E. coli. Moreover, blue light was utilized to induce the expression of the mechanosensitive channel of large conductance (MscL), triumphantly leading to the increase of streptomycin susceptibility in engineered E. coli. Finally, the increased susceptibility of ampicillin and streptomycin was simultaneously induced by blue light in the same E. coli cell, revealing the excellent potential of this strategy in controlling multidrug-resistant (MDR) bacteria. As a proof of concept, our work demonstrates that light can be used as an alternative tool to prolong the use period of common antibiotics without developing new antibiotics. And this novel strategy based on optogenetics shows a promising foreground to combat antibiotic resistance in the future.


Anti-Bacterial Agents , Escherichia coli , Light , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Anti-Bacterial Agents/pharmacology , Optogenetics/methods , Gene Expression Regulation, Bacterial/drug effects , Ampicillin/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Drug Resistance, Bacterial/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Streptomycin/pharmacology , Blue Light
7.
PLoS Pathog ; 20(5): e1012187, 2024 May.
Article En | MEDLINE | ID: mdl-38718038

The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) has significant challenges to human health and clinical treatment, with KPC-2-producing CRKP being the predominant epidemic strain. Therefore, there is an urgent need to identify new therapeutic targets and strategies. Non-coding small RNA (sRNA) is a post-transcriptional regulator of genes involved in important biological processes in bacteria and represents an emerging therapeutic strategy for antibiotic-resistant bacteria. In this study, we analyzed the transcription profile of KPC-2-producing CRKP using RNA-seq. Of the 4693 known genes detected, the expression of 307 genes was significantly different from that of carbapenem-sensitive Klebsiella pneumoniae (CSKP), including 133 up-regulated and 174 down-regulated genes. Both the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) analysis showed that these differentially expressed genes (DEGs) were mainly related to metabolism. In addition, we identified the sRNA expression profile of KPC-2-producing CRKP for the first time and detected 115 sRNAs, including 112 newly discovered sRNAs. Compared to CSKP, 43 sRNAs were differentially expressed in KPC-2-producing CRKP, including 39 up-regulated and 4 down-regulated sRNAs. We chose sRNA51, the most significantly differentially expressed sRNA in KPC-2-producing CRKP, as our research subject. By constructing sRNA51-overexpressing KPC-2-producing CRKP strains, we found that sRNA51 overexpression down-regulated the expression of acrA and alleviated resistance to meropenem and ertapenem in KPC-2-producing CRKP, while overexpression of acrA in sRNA51-overexpressing strains restored the reduction of resistance. Therefore, we speculated that sRNA51 could affect the resistance of KPC-2-producing CRKP by inhibiting acrA expression and affecting the formation of efflux pumps. This provides a new approach for developing antibiotic adjuvants to restore the sensitivity of CRKP.


Carbapenems , Klebsiella pneumoniae , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Klebsiella pneumoniae/drug effects , beta-Lactamases/genetics , beta-Lactamases/metabolism , Carbapenems/pharmacology , Humans , Gene Expression Regulation, Bacterial , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Klebsiella Infections/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , RNA, Small Untranslated/genetics , RNA, Bacterial/genetics , Microbial Sensitivity Tests
8.
Sci Rep ; 14(1): 10066, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698009

The global threat of antibiotic resistance has increased the importance of the detection of antibiotics. Conventional methods to detect antibiotics are time-consuming and require expensive specialized equipment. Here, we present a simple and rapid biosensor for detecting ampicillin, a commonly used antibiotic. Our method is based on the fluorescent properties of chitosan-coated Mn-doped ZnS micromaterials combined with the ß-lactamase enzyme. The biosensors exhibited the highest sensitivity in a linear working range of 13.1-72.2 pM with a limit of detection of 8.24 pM in deionized water. In addition, due to the biological specificity of ß-lactamase, the proposed sensors have demonstrated high selectivity over penicillin, tetracycline, and glucose through the enhancing and quenching effects at wavelengths of 510 nm and 614 nm, respectively. These proposed sensors also showed promising results when tested in various matrices, including tap water, bottled water, and milk. Our work reports for the first time the cost-effective (Mn:ZnS)Chitosan micromaterial was used for ampicillin detection. The results will facilitate the monitoring of antibiotics in clinical and environmental contexts.


Ampicillin , Biosensing Techniques , Chitosan , Manganese , Sulfides , Zinc Compounds , Ampicillin/analysis , Ampicillin/chemistry , Chitosan/chemistry , Biosensing Techniques/methods , Zinc Compounds/chemistry , Manganese/chemistry , Sulfides/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , beta-Lactamases/analysis , beta-Lactamases/metabolism , beta-Lactamases/chemistry , Milk/chemistry , Limit of Detection , Spectrometry, Fluorescence/methods , Fluorescent Dyes/chemistry , Animals
9.
Virulence ; 15(1): 2348251, 2024 Dec.
Article En | MEDLINE | ID: mdl-38697754

OBJECTIVES: This study aimed at revealing the underlying mechanisms of the loss and gain of ceftazidime-avibactam susceptibility in a non-carbapenemase-producing hypervirulent Klebsiella pneumoniae (hvKp). METHODS: Here we longitudinally recovered 3 non-carbapenemase-producing K1-ST23 hvKp strains at a one-month interval (KP29105, KP29499 and KP30086) from an elderly male. Antimicrobial susceptibility testing, whole genome sequencing, transcriptomic sequencing, gene cloning, plasmid conjugation, quantitative real-time PCR (qRT-PCR), and SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) were conducted. RESULTS: Among the 3 hvKp strains, KP29105 was resistant to the third- and fourth-generation cephalosporins, KP29499 acquired resistance to both ceftazidime-avibactam and carbapenems, while KP30086 restored its susceptibility to ceftazidime-avibactam, imipenem and meropenem but retained low-level resistance to ertapenem. KP29105 and KP29499 carried plasmid-encoded genes blaCTX-M-15 and blaCTX-M-71, respectively, but KP30086 lost both. Cloning of gene blaCTX-M-71 and conjugation experiment of blaCTX-M-71-carrying plasmid showed that the transformant and transconjugant were susceptible to ceftazidime-avibactam but had a more than 8-fold increase in MICs. Supplementation with an outer membrane permeabilizer could reduce the MIC of ceftazidime-avibactam by 32 folds, indicating that porins play a key role in ceftazidime-avibactam resistance. The OmpK35 of the 3 isolates was not expressed, and the OmpK36 of KP29499 and KP30086 had a novel amino acid substitution (L359R). SDS-PAGE and qRT-PCR showed that the expression of porin OmpK36 of KP29499 and KP30086 was significantly down-regulated compared with KP29105. CONCLUSIONS: In summary, we reported the rare ceftazidime-avibactam resistance in a non-carbapenemase-producing hvKp strain. Resistance plasmid carrying blaCTX-M-71 and mutated OmpK36 had a synergetic effect on the resistance.


Anti-Bacterial Agents , Azabicyclo Compounds , Bacterial Proteins , Ceftazidime , Drug Combinations , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Ceftazidime/pharmacology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/pathogenicity , Klebsiella pneumoniae/enzymology , Azabicyclo Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Male , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , Aged , Drug Resistance, Multiple, Bacterial/genetics , Virulence , Plasmids/genetics , Whole Genome Sequencing
10.
BMC Vet Res ; 20(1): 174, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702700

Antimicrobial resistance is considered one of the most critical threat for both human and animal health. Recently, reports of infection or colonization by carbapenemase-producing Enterobacterales in companion animals had been described. This study report the first molecular characterization of NDM-producing Enterobacterales causing infections in companion animals from Argentina. Nineteen out of 3662 Enterobacterales isolates analyzed between October 2021 and July 2022 were resistant to carbapenemes by VITEK2C and disk diffusion method, and suspected to be carbapenemase-producers. Ten isolates were recovered from canine and nine from feline animals. Isolates were identified as K. pneumoniae (n = 9), E. coli (n = 6) and E. cloacae complex (n = 4), and all of them presented positive synergy among EDTA and carbapenems disks, mCIM/eCIM indicative of metallo-carbapenemase production and were also positive by PCR for blaNDM gene. NDM variants were determined by Sanger sequencing method. All 19 isolates were resistant to ß-lactams and aminoglycosides but remained susceptible to colistin (100%), tigecycline (95%), fosfomycin (84%), nitrofurantoin (63%), minocycline (58%), chloramphenicol (42%), doxycycline (21%), enrofloxacin (5%), ciprofloxacin (5%) and trimethoprim/sulfamethoxazole (5%). Almost all isolates (17/19) co-harbored blaCTX-M plus blaCMY, one harbored blaCTX-M alone and the remaining blaCMY. E. coli and E. cloacae complex isolates harbored blaCTX-M-1/15 or blaCTX-M-2 groups, while all K. pneumoniae harbored only blaCTX-M-1/15 genes. All E. coli and E. cloacae complex isolates harbored blaNDM-1, while in K. pneumoniae blaNDM-1 (n = 6), blaNDM-5 (n = 2), and blaNDM-1 plus blaNDM-5 (n = 1) were confirmed. MLST analysis revealed the following sequence types by species, K. pneumoniae: ST15 (n = 5), ST273 (n = 2), ST11, and ST29; E. coli: ST162 (n = 3), ST457, ST224, and ST1196; E. cloacae complex: ST171, ST286, ST544 and ST61. To the best of our knowledge, this is the first description of NDM-producing E. cloacae complex isolates recovered from cats. Even though different species and clones were observed, it is remarkable the finding of some major clones among K. pneumoniae and E. coli, as well as the circulation of NDM as the main carbapenemase. Surveillance in companion pets is needed to detect the spread of carbapenem-resistant Enterobacterales and to alert about the dissemination of these pathogens among pets and humans.


Anti-Bacterial Agents , Cat Diseases , Dog Diseases , Enterobacteriaceae Infections , beta-Lactamases , Animals , Cats , Dogs , Cat Diseases/microbiology , Cat Diseases/epidemiology , beta-Lactamases/genetics , Argentina/epidemiology , Enterobacteriaceae Infections/veterinary , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Dog Diseases/microbiology , Dog Diseases/epidemiology , Microbial Sensitivity Tests , Pets , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/genetics , Enterobacteriaceae/enzymology , Escherichia coli/drug effects , Escherichia coli/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/enzymology
11.
Rev Med Suisse ; 20(872): 866-871, 2024 May 01.
Article Fr | MEDLINE | ID: mdl-38693798

Multi-resistant Enterobacterales (MRE) are on the increase worldwide, with the main mechanism of resistance acquisition being horizontal transfer of plasmids coding for extended-spectrum betalactamase and/or carbapenemase. Low- and middle-income countries are the most affected, but surveillance in low-endemicity countries, such as Switzerland, is essential. International travel is one of the sources of MRE dissemination in the community, with the main risk factors for acquiring MRE being a stay in South or Southeast Asia and the use of antibiotics during travel. Other factors, notably animal and environmental, also explain this increase. Measures encompassing a One Health approach are therefore needed to address this issue.


Les entérobactéries multirésistantes (EMR) sont en augmentation dans le monde, avec comme mécanisme principal d'acquisition de résistance le transfert horizontal de plasmides codant pour une bêtalactamase à spectre étendu et/ou une carbapénèmase. Les pays à bas et moyens revenus sont les plus touchés, mais une surveillance dans les pays à faible endémicité, comme la Suisse, est essentielle. Les voyages internationaux sont l'une des sources de dissémination d'EMR dans la communauté, avec comme facteurs de risque principaux d'acquisition d'EMR un séjour en Asie du Sud ou du Sud-Est et l'utilisation d'antibiotiques durant le voyage. D'autres facteurs, notamment animaliers et environnementaux, expliquent aussi cette augmentation. Ainsi, il est nécessaire que des mesures englobant une approche « One Health ¼ répondent à cette problématique.


Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Enterobacteriaceae Infections , Enterobacteriaceae , Travel , Humans , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae/drug effects , Anti-Bacterial Agents/pharmacology , Risk Factors , Animals , One Health , Plasmids , beta-Lactamases/genetics
12.
Front Cell Infect Microbiol ; 14: 1297312, 2024.
Article En | MEDLINE | ID: mdl-38690325

Background: During the coronavirus disease 2019 (COVID-19) pandemic, in patients treated for SARS-CoV-2 infection, infections with the Klebsiella pneumoniae bacteria producing New Delhi metallo-B-lactamase (NDM) carbapenemase in the USA, Brazil, Mexico, and Italy were observed, especially in intensive care units (ICUs). This study aimed to assess the impact of Klebsiella pneumoniae NDM infection and other bacterial infections on mortality in patients treated in ICUs due to COVID-19. Methods: The 160 patients who qualified for the study were hospitalized in ICUs due to COVID-19. Three groups were distinguished: patients with COVID-19 infection only (N = 72), patients with COVID-19 infection and infection caused by Klebsiella pneumoniae NDM (N = 30), and patients with COVID-19 infection and infection of bacterial etiology other than Klebsiella pneumoniae NDM (N = 58). Mortality in the groups and chosen demographic data; biochemical parameters analyzed on days 1, 3, 5, and 7; comorbidities; and ICU scores were analyzed. Results: Bacterial infection, including with Klebsiella pneumoniae NDM type, did not elevate mortality rates. In the group of patients who survived the acute phase of COVID-19 the prolonged survival time was demonstrated: the median overall survival time was 13 days in the NDM bacterial infection group, 14 days in the other bacterial infection group, and 7 days in the COVID-19 only group. Comparing the COVID-19 with NDM infection and COVID-19 only groups, the adjusted model estimated a statistically significant hazard ratio of 0.28 (p = 0.002). Multivariate analysis revealed that age, APACHE II score, and CRP were predictors of mortality in all the patient groups. Conclusion: In patients treated for SARS-CoV-2 infection acquiring a bacterial infection due to prolonged hospitalization associated with the treatment of COVID-19 did not elevate mortality rates. The data suggests that in severe COVID-19 patients who survived beyond the first week of hospitalization, bacterial infections, particularly Klebsiella pneumoniae NDM, do not significantly impact mortality. Multivariate analysis revealed that age, APACHE II score, and CRP were predictors of mortality in all the patient groups.


COVID-19 , Drug Resistance, Multiple, Bacterial , Intensive Care Units , Klebsiella Infections , Klebsiella pneumoniae , SARS-CoV-2 , beta-Lactamases , Humans , COVID-19/mortality , COVID-19/microbiology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Male , Female , Klebsiella Infections/mortality , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , beta-Lactamases/metabolism , beta-Lactamases/genetics , Middle Aged , Aged , Adult , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Aged, 80 and over
13.
New Microbiol ; 47(1): 1-14, 2024 May.
Article En | MEDLINE | ID: mdl-38700878

Antibiotics are designed to effectively treat bacterial infections while minimizing harm to the human body. They work by targeting specific components of bacteria or by disrupting essential processes such as cell wall synthesis, membrane function, protein production, and metabolic pathways. However, the misuse and overuse of antibiotics have led to the emergence of drug resistance in humans, animals, and agriculture, contributing to the global spread of this problem. Drug resistance can be either innate or acquired, with acquired resistance involving changes in the bacterial chromosomes or transferable elements. Bacterial species employ various mechanisms of drug resistance, including modifying the antibiotic targets, inactivating the drug, reducing uptake or increasing efflux, overexpressing the target, utilizing alternative pathways, and forming biofilms. One significant concern in the realm of drug resistance revolves around the emergence and proliferation of extended-spectrum beta-lactamases (ESBLs), a gene that is found in most gram-negative bacteria, primarily carried by Escherichia coli and Klebsiella pneumoniae in healthcare settings. ESBL-mediated resistance poses challenges for diagnosis, treatment, infection control, and antibiotic stewardship. Accurate detection of ESBL genes is crucial, and phenotypic methods are commonly used for initial screening. However, these methods have limitations, and confirmatory molecular techniques such as PCR and DNA sequencing are employed to accurately identify ESBL genes. Despite the significant global concerns surrounding ESBLs, they have spread worldwide, mainly facilitated by healthcare settings, inappropriate antimicrobial use, and host susceptibility. Addressing this issue requires implementing comprehensive measures, including enhanced surveillance, strict infection control practices, antibiotic stewardship programs, rapid diagnostic methods, alternative therapies, public education initiatives, and research focused on developing new drugs. Furthermore, collaboration among the healthcare, public health, and research sectors is pivotal in effectively combating the escalating threat posed by ESBL-mediated resistance. Antibiotics have revolutionized medical care by effectively treating bacterial infections. However, the emergence of ESBL gene resistance poses a global challenge that requires an integrated approach to prevent a threatening future.


Anti-Bacterial Agents , beta-Lactamases , beta-Lactamases/genetics , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Humans , Animals , Drug Resistance, Bacterial/genetics , Phenotype , Bacteria/drug effects , Bacteria/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
14.
J Assoc Physicians India ; 72(1): 43-46, 2024 Jan.
Article En | MEDLINE | ID: mdl-38736073

INTRODUCTION: A survey-based approach to managing antibiotic-resistant infections in the intensive care unit (ICU) setting, with a focus on carbapenem-resistant Enterobacteriaceae (CRE) cases, was conducted. Among CRE, New Delhi metallo-ß-lactamase 1 (NDM-1) is a carbapenemase that is resistant to ß-lactam antibiotics and has a broader spectrum of antimicrobial resistance than other carbapenemase types. The article explains that healthcare-associated infections (HAIs) are a significant problem, particularly in low- and middle-income countries, and that carbapenem in combination with other antibiotics are the most potent class of antimicrobial agents effective in treating life-threatening bacterial infections, including those caused by resistant strains. AIM: The survey aimed to gather critical care healthcare professionals (HCPs') opinions on their current practices in managing infections acquired in the hospital and ICU settings, with a focus on CRE cases, specifically NDM-1 and other antibiotic-resistant infections. METHODS: Responses from critical care healthcare professionals, including online surveys and in-person interviews, to gain insights into the management of infections caused by multidrug-resistant bacteria. The findings related to the insights on the prevalence of bacterial flora, clinical experiences on efficacy and safety of meropenem sulbactam ethylenediaminetetraacetic acid (EDTA) (MSE) in CRE cases, and various combination therapies of antibiotics used to treat antibiotic-resistant infections in ICU setting were evaluated. RESULTS: Klebsiella pneumoniae bacteria were the most common bacteria in cultures, followed by Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. NDM-1 was the type of carbapenemase found in around 50% of CRE patients. MSE is among the most preferred antibiotics besides colistin, polymyxin B, and ceftazidime avibactum for CRE cases and specifically for NDM-1 cases due to its high rate of efficacy and safety. CONCLUSION: The article concludes with a discussion on the antibiotics used in response to CRE cases, reporting that critical care HCP considers MSE with high efficacy and safe antibiotic combination and was used as both monotherapy and in combination with other antibiotics. The survey highlights the need for exploring and better understanding the role of MSE in the management of CRE infections, especially in NDM-1.


Anti-Bacterial Agents , Carbapenem-Resistant Enterobacteriaceae , Critical Care , Enterobacteriaceae Infections , Intensive Care Units , Humans , Anti-Bacterial Agents/therapeutic use , Enterobacteriaceae Infections/drug therapy , Critical Care/methods , Cross Infection/drug therapy , Cross Infection/microbiology , Surveys and Questionnaires , beta-Lactamases , Drug Resistance, Multiple, Bacterial , Meropenem/therapeutic use , India , Attitude of Health Personnel , Polymyxin B/therapeutic use , Carbapenems/therapeutic use , Carbapenems/pharmacology , Klebsiella pneumoniae/drug effects , Health Personnel
15.
J Chem Inf Model ; 64(9): 3706-3717, 2024 May 13.
Article En | MEDLINE | ID: mdl-38687957

L2 ß-lactamases, serine-based class A ß-lactamases expressed by Stenotrophomonas maltophilia, play a pivotal role in antimicrobial resistance (AMR). However, limited studies have been conducted on these important enzymes. To understand the coevolutionary dynamics of L2 ß-lactamase, innovative computational methodologies, including adaptive sampling molecular dynamics simulations, and deep learning methods (convolutional variational autoencoders and BindSiteS-CNN) explored conformational changes and correlations within the L2 ß-lactamase family together with other representative class A enzymes including SME-1 and KPC-2. This work also investigated the potential role of hydrophobic nodes and binding site residues in facilitating the functional mechanisms. The convergence of analytical approaches utilized in this effort yielded comprehensive insights into the dynamic behavior of the ß-lactamases, specifically from an evolutionary standpoint. In addition, this analysis presents a promising approach for understanding how the class A ß-lactamases evolve in response to environmental pressure and establishes a theoretical foundation for forthcoming endeavors in drug development aimed at combating AMR.


Deep Learning , Molecular Dynamics Simulation , beta-Lactamases , beta-Lactamases/metabolism , beta-Lactamases/chemistry , Evolution, Molecular , Protein Conformation , Stenotrophomonas maltophilia/enzymology
16.
mBio ; 15(5): e0305423, 2024 May 08.
Article En | MEDLINE | ID: mdl-38564701

Serratia marcescens is an opportunistic pathogen historically associated with sudden outbreaks in intensive care units (ICUs) and the spread of carbapenem-resistant genes. However, the ecology of S. marcescens populations in the hospital ecosystem remains largely unknown. We combined epidemiological information of 1,432 Serratia spp. isolates collected from sinks of a large ICU that underwent demographic and operational changes (2019-2021) and 99 non-redundant outbreak/non-outbreak isolates from the same hospital (2003-2019) with 165 genomic data. These genomes were grouped into clades (1-4) and subclades (A and B) associated with distinct species: Serratia nematodiphila (1A), S. marcescens (1B), Serratia bockelmannii (2A), Serratia ureilytica (2B), S. marcescens/Serratia nevei (3), and S. nevei (4A and 4B). They may be classified into an S. marcescens complex (SMC) due to the similarity between/within subclades (average nucleotide identity >95%-98%), with clades 3 and 4 predominating in our study and publicly available databases. Chromosomal AmpC ß-lactamase with unusual basal-like expression and prodigiosin-lacking species contrasted classical features of Serratia. We found persistent and coexisting clones in sinks of subclades 4A (ST92 and ST490) and 4B (ST424), clonally related to outbreak isolates carrying blaVIM-1 or blaOXA-48 on prevalent IncL/pB77-CPsm plasmids from our hospital since 2017. The distribution of SMC populations in ICU sinks and patients reflects how Serratia species acquire, maintain, and enable plasmid evolution in both "source" (permanent, sinks) and "sink" (transient, patients) hospital patches. The results contribute to understanding how water sinks serve as reservoirs of Enterobacterales clones and plasmids that enable the persistence of carbapenemase genes in healthcare settings, potentially leading to outbreaks and/or hospital-acquired infections.IMPORTANCEThe "hospital environment," including sinks and surfaces, is increasingly recognized as a reservoir for bacterial species, clones, and plasmids of high epidemiological concern. Available studies on Serratia epidemiology have focused mainly on outbreaks of multidrug-resistant species, overlooking local longitudinal analyses necessary for understanding the dynamics of opportunistic pathogens and antibiotic-resistant genes within the hospital setting. This long-term genomic comparative analysis of Serratia isolated from the ICU environment with isolates causing nosocomial infections and/or outbreaks within the same hospital revealed the coexistence and persistence of Serratia populations in water reservoirs. Moreover, predominant sink strains may acquire highly conserved and widely distributed plasmids carrying carbapenemase genes, such as the prevalent IncL-pB77-CPsm (pOXA48), persisting in ICU sinks for years. The work highlights the relevance of ICU environmental reservoirs in the endemicity of certain opportunistic pathogens and resistance mechanisms mainly confined to hospitals.


Cross Infection , Intensive Care Units , Serratia Infections , Serratia marcescens , Serratia marcescens/genetics , Serratia marcescens/isolation & purification , Serratia marcescens/classification , Serratia Infections/epidemiology , Serratia Infections/microbiology , Humans , Cross Infection/microbiology , Cross Infection/epidemiology , Disease Outbreaks , Genome, Bacterial , Hospitals , Phylogeny , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/genetics , Microbial Sensitivity Tests
17.
Epidemiol Infect ; 152: e70, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38606647

Rectal swabs of 104 patients who underwent abdominal surgery were screened for ESBL producers. Sequence types (STs) and resistance genes were identified by whole-genome sequencing of 46 isolates from 17 patients. All but seven isolates were assigned to recognized STs. While 18 ESBL-producing E. coli (EPEC) strains were of unique STs, ESBL-producing K. pneumoniae (EPKP) strains were mainly ST14 or ST15. Eight patients harboured strains of the same ST before and after abdominal surgery. The most prevalent resistant genes in E. coli were blaEC (69.57%), blaCTX-M (65.22%), and blaTEM (36.95%), while blaSHV was present in only K. pneumoniae (41.30%). Overall, genes encoding ß-lactamases of classes A (blaCTX-M, blaTEM, blaZ), C (blaSHV, blaMIR, and blaDHA), and D (blaOXA) were identified, the most prevalent variants being blaCTX-M-15, blaTEM-1B, blaSHV-28, and blaOXA-1. Interestingly, blaCMY-2, the most common pAmpC ß-lactamase genes reported worldwide, and mobile colistin resistance genes, mcr-10-1, were also identified. The presence of blaCMY-2 and mcr-10-1 is concerning as they may constitute a potentially high risk of pan-resistant post-surgical infections. It is imperative that healthcare professionals monitor intra-abdominal surgical site infections rigorously to prevent transmission of faecal ESBL carriage in high-risk patients.


beta-Lactamases , Humans , beta-Lactamases/genetics , beta-Lactamases/metabolism , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli/drug effects , Whole Genome Sequencing , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/epidemiology , Genome, Bacterial , Anti-Bacterial Agents/pharmacology , Male , Female , Middle Aged , Abdomen/surgery , Abdomen/microbiology , Aged , Microbial Sensitivity Tests
18.
Chemosphere ; 357: 141918, 2024 Jun.
Article En | MEDLINE | ID: mdl-38614394

Aeromonas spp. are frequently encountered in aquatic environments, with Aeromonas veronii emerging as an opportunistic pathogen causing a range of diseases in both humans and animals. Recent reports have raised public health concerns due to the emergence of multidrug-resistant Aeromonas spp. This is particularly noteworthy as these species have demonstrated the ability to acquire and transmit antimicrobial resistance genes (ARGs). In this study, we report the genomic and phenotypic characteristics of the A. veronii TR112 strain, which harbors a novel variant of the Vietnamese Extended-spectrum ß-lactamase-encoding gene, blaVEB-28, and two mcr variants recovered from an urban river located in the Metropolitan Region of São Paulo, Brazil. A. veronii TR112 strain exhibited high minimum inhibitory concentrations (MICs) for ceftazidime (64 µg/mL), polymyxin (8 µg/mL), and ciprofloxacin (64 µg/mL). Furthermore, the TR112 strain demonstrated adherence to HeLa and Caco-2 cells within 3 h, cytotoxicity to HeLa cells after 24 h of interaction, and high mortality rates to the Galleria mellonella model. Genomic analysis showed that the TR112 strain belongs to ST257 and presented a range of ARGs conferring resistance to ß-lactams (blaVEB-28, blaCphA3, blaOXA-912) and polymyxins (mcr-3 and mcr-3.6). Additionally, we identified a diversity of virulence factor-encoding genes, including those encoding mannose-sensitive hemagglutinin (Msh) pilus, polar flagella, type IV pili, type II secretion system (T2SS), aerolysin (AerA), cytotoxic enterotoxin (Act), hemolysin (HlyA), hemolysin III (HlyIII), thermostable hemolysin (TH), and capsular polysaccharide (CPS). In conclusion, our findings suggest that A. veronii may serve as an environmental reservoir for ARGs and virulence factors, highlighting its importance as a potential pathogen in public health.


Aeromonas veronii , Anti-Bacterial Agents , Microbial Sensitivity Tests , Rivers , beta-Lactamases , beta-Lactamases/genetics , beta-Lactamases/metabolism , Humans , Anti-Bacterial Agents/pharmacology , Rivers/microbiology , Aeromonas veronii/genetics , Aeromonas veronii/isolation & purification , Aeromonas veronii/drug effects , Brazil , HeLa Cells , Caco-2 Cells , Animals , Drug Resistance, Multiple, Bacterial/genetics
19.
ACS Infect Dis ; 10(5): 1767-1779, 2024 May 10.
Article En | MEDLINE | ID: mdl-38619138

Peptidoglycan synthesis is an underutilized drug target in Mycobacterium tuberculosis (Mtb). Diazabicyclooctanes (DBOs) are a class of broad-spectrum ß-lactamase inhibitors that also inhibit certain peptidoglycan transpeptidases that are important in mycobacterial cell wall synthesis. We evaluated the DBO durlobactam as an inhibitor of BlaC, the Mtb ß-lactamase, and multiple Mtb peptidoglycan transpeptidases (PonA1, LdtMt1, LdtMt2, LdtMt3, and LdtMt5). Timed electrospray ionization mass spectrometry (ESI-MS) captured acyl-enzyme complexes with BlaC and all transpeptidases except LdtMt5. Inhibition kinetics demonstrated durlobactam was a potent and efficient DBO inhibitor of BlaC (KI app 9.2 ± 0.9 µM, k2/K 5600 ± 560 M-1 s-1) and similar to clavulanate (KI app 3.3 ± 0.6 µM, k2/K 8400 ± 840 M-1 s-1); however, durlobactam had a lower turnover number (tn = kcat/kinact) than clavulanate (1 and 8, respectively). KI app values with durlobactam and clavulanate were similar for peptidoglycan transpeptidases, but ESI-MS captured durlobactam complexes at more time points. Molecular docking and simulation demonstrated several productive interactions of durlobactam in the active sites of BlaC, PonA1, and LdtMt2. Antibiotic susceptibility testing was conducted on 11 Mtb isolates with amoxicillin, ceftriaxone, meropenem, imipenem, clavulanate, and durlobactam. Durlobactam had a minimum inhibitory concentration (MIC) range of 0.5-16 µg/mL, similar to the ranges for meropenem (1-32 µg/mL) and imipenem (0.5-64 µg/mL). In ß-lactam + durlobactam combinations (1:1 mass/volume), MICs were lowered 4- to 64-fold for all isolates except one with meropenem-durlobactam. This work supports further exploration of novel ß-lactamase inhibitors that target BlaC and Mtb peptidoglycan transpeptidases.


Mycobacterium tuberculosis , beta-Lactamase Inhibitors , beta-Lactamases , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/chemistry , beta-Lactamases/metabolism , beta-Lactamases/chemistry , Peptidyl Transferases/antagonists & inhibitors , Peptidyl Transferases/metabolism , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/chemistry , Microbial Sensitivity Tests , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Molecular Docking Simulation , Peptidoglycan/metabolism , Peptidoglycan/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Kinetics , Aminoacyltransferases
20.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 391-396, 2024 Mar 20.
Article Zh | MEDLINE | ID: mdl-38645859

Objective: To investigate the clinical characteristics and molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolated from patients with bloodstream infections in a large tertiary-care general hospital in Southwest China. Methods: A total of 131 strains of non-repeating CRKP were collected from the blood cultures of patients who had bloodstream infections in 2015-2019. The strains were identified by VITEK-2, a fully automated microbial analyzer, and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. The minimum inhibitory concentration (MIC) was determined by microbroth dilution method. The common carbapenemase resistant genes and virulence factors were identified by PCR. Homology analysis was performed by multilocus sequencing typing. Whole genome sequencing was performed to analyze the genomic characteristics of CRKP without carbapenemase. Results: The 131 strains of CRKP showed resistance to common antibiotics, except for polymyxin B (1.6% resistance rate) and tigacycline (8.0% resistance rate). A total of 105 (80.2%) CRKP strains carried the Klebsiella pneumoniae carbapenemase (KPC) resistance gene, 15 (11.4%) strains carried the New Delhi Metallo-ß-lactamase (NDM) gene, and 4 (3.1%) isolates carried both KPC and NDM genes. Sequence typing (ST) 11 (74.0%) was the dominant sequence type. High detection rates for mrkD (96.2%), fimH (98.5%), entB (100%), and other virulence genes were reported. One hypervirulent CRKP strain was detected. The seven strains of CRKP that did not produce carbapenemase were shown to carry ESBL or AmpC genes and had anomalies in membrane porins OMPK35 and OMPK36, according to whole genome sequencing. Conclusion: In a large-scale tertiary-care general hospital, CRKP mainly carries the KPC gene, has a high drug resistance rate to a variety of antibiotics, and possesses multiple virulence genes. Attention should be paid to CRKP strains with high virulence.


Bacterial Proteins , Carbapenems , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Molecular Epidemiology , Virulence Factors , beta-Lactamases , Humans , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/pathogenicity , Bacterial Proteins/genetics , beta-Lactamases/genetics , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , China/epidemiology , Carbapenems/pharmacology , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology , Virulence/genetics , Male , Female , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Carbapenem-Resistant Enterobacteriaceae/drug effects , Middle Aged , Bacteremia/microbiology , Bacteremia/epidemiology , Whole Genome Sequencing/methods
...